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Rotational diffusion of nonspherical Brownian particles in a suspension of spheres
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A theory is presented to describe the translational and rotational Brownian motion of a nonspherical tracer
particle that interacts with other diffusing spherical particles around it. In order to apply this theory, approxi-
mations must be introduced that allow us to express the tracer-diffusion properties of the tracer particle in
terms of the static structural properties of the system. We illustrate the application of these results with the
calculation of the rotational diffusion coefficient of a Brownian electric dipole that interacts with a Brownian
one-component plasmgS1063-651X96)06112-(

PACS numbsds): 82.70.Dd
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- INTRODUCTION A Z(t) of the nonspherical tracer, and it is this quantity what

h ional d . ¢ herical colloidal we want to calculate. As in paper I, here we also neglect
The rotational dynamics of nonspherical colloidal par-py4rdynamic interactions. The main purpose of this paper is

ticles is a subject of long-standing inter¢$2]. Among the 4 gerive, starting from the general and exact results of paper
many issues that await systematic study, both from the theo-

=4
retical and from the experimental side, is the description of: @PProximate expressions fdr{(t) in terms only of the

the effects of the interactions between many colloidal parStatic properties of the system. These approximate expres-

ticles that execute translational and rotational Brownian moSions will be, however, still general for the generic condi-

tion while interacting among themselves by direct and hy_fuons to which we restrict ourselves here. As it turns out,

drodynamic force3]. In this paper we address one aspect Ofmtroqixcing approximations leads not to a single expression
this general problem, as a continuation of our work on thisfor A £ (t), but to a number of different results, which may in
subject contained in the previous papéf (hereafter referred general not be consistent. Thus, another important purpose of
to as paper)l There we developed a general theory to de-this work is to monitor the consequences of the order and
scribe the effects of the direct interactions between a nonhierarchy of the approximations that are introduced. The ap-
spherical tracer particle and other, also generally nonProximate results of this paper will then be ready for their
spherical, particles diffusing around it, on the translationaPecific application to concrete systems such as the one men-
and rotational motion of the former. The main result of thattioned aboveTMV in polystyrene sphere suspensjoHlere,
paper is the derivation of a generalized Langevin equatiohOWever, we shall only describe their application to a sim-
for the linear and angular velocity of the tracer particle. ThePler and idealized model system, with the purpose of illus-

effects of the direct interactions with the other particles aré'@ting the protocol to be followed in the process of going
_ _ _ o o rom the general and exact results of paper | down to con-
contained in a time-dependent friction tensar/(t), for  ¢rete and specific applications.

which general and exact expressions were derived. Those |n the following section we quote the main results of pa-
formally exact results, however, cannot be used in a concretger |, and in Sec. Ill we introduce the first simplifying ap-
application before approximations and simplifications are inproximation, referred to as the homogeneity approximation.
troduced, and this is what we doin the present work. In ordefrhe second important approximation is the use of Fick's
to proceed, however, we first restrict the generality of thegjffusion (or short-time approximation for the collective dif-
results in paper | to the case in which the tracer particle igysjon propagator for the spherical particles, along with a
nonspherical, but the other particles with which it interactSmanner to relate the description of this propagator as ob-
are spherical. For concreteness, we might imagine a systeBryed from the reference frame of the tracer particle, and as
formed by a suspension of interacting spherical colloidal parppserved from the laboratory. This is discussed in Sec. IV. In
ticles (e.g., polystyrene spheres in waten which a trace of  gec. v we discuss a general self-consistency test of our re-
nonspherical particles is addgd.g., tobacco mosaic Vvirus gylts. The extension to multicomponent suspension is de-
(TMV), or other rigid polyelectrolyte Each of these non- s¢riped in Sec. VI. In Sec. VII we illustrate their application
spherical tracer particles will execute translational and rotatg 5 simple idealized model, namely, a Brownian dipole in-

tional Brownian motion, while interacting with the many teracting with a Brownian one-component plasma. Section
spherical particles around them. The effects of these interagy||| summarizes our results.

tions are contained in the time-dependent friction function
Il. GENERAL RESULTS

* Also at Departamento de $ica, Centro de Investigacioy Estu- Let us start our discussion by quoting the general and
dios Avanzados del IPN, Apdo. Postal 14-740, Mexico D.F.,exact results of paper |, as they apply to the generic system
Mexico. considered herésee Sec. VIII of paper)l Thus, consider a
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nonspherical tracer particle whose instantaneous linear anshrticles are contained in the random foFg¢) and random
angular velocityV(t) and w(t) are definedwith respect to
the laboratory, but whose components eeterredto a ref-
erence frame whose origin is fixed to the laboratory, but
whose orientation follows instantaneously the orientation o
the principal axis of the rotating tracer particle. IMtbe the
mass, and let; I(i=1,2,3) be the principal moments of iner- dissipation relatio F(t)FT(O)> kBTAg(t)

tia of the tracer particle. Then, according to the general re- The other important result of paper | is a general and
sults of paper |, and using the compact notation introduced&xact expression for the time-dependent friction tensor
there, the equation of motion of the tracer particle is the
following generalized Langevin equation

=
torqueT(t) grouped inF(t). These are stochastic processes,
which are not necessarily Gaussian, and are certainly not
16 correlated. They do have zero mean, and their time-
dependent correlation function is glven by the fluctuation-

A g’(t) describing the effects of the direct interactions. This
general result can be written in three alternative but formally
equivalent manners. Here we shall only be interested in two
= of them, referred to as theoncentrationequation and the
M- ———=—70v(t)+£Ot) force equation. The concentration equation is written as

—ftdt'A?(t—t')-\7(t')+§(t), i Ag(t)=kBTf d3r1f dsrzf drg
0

= = = e e
where the six-component vectowqt), f(t), and F(t) are X[Vln role rl’rZ)X(rz’r?”t)[V3n )l
defined as 4
- Vi) o - o) - F(t) where
V= wit) |, FPO={w |, FO={T11) | v
V=lrxv ®)
and the &6 matricesM, ¢°, andA {(t) are defined as and wheren®Yr) is the equilibrium local concentration of
spherical particles around the tracer partihere we only
0 0 consider the case corresponding to a monodisperse suspen-
o ¢ TR = M1 O sion of spheres; the extension to polidisperse suspensions
&=\ - . , M= o 1| will be indicated in Sec. VI below In Eq.(4), o~ 1(rq,ry) is
§°ET §°R the inverse of the static correlation function
o(ry,r)=(én(r,,006n(r,,0)), (6)
| AL ALY of the spheres, whedn(r,t)=n(r,t) —n®qr) is the fluctua-
Af(y= o o ' 3 tion of their instantaneous local concentratig(m,t), around
ALt AR its equilibrium valuen®{r). ¢~ ! and o are related by

Jd3 07 X(ry,r,)o(r,,r3)=6(r,—r3). The collective diffu-

with M;;=M;8;, andM;=M (the maspfor i=12,3 and > " propagatog(ra.rz;t) can be defined as

M;,=1, for i=4,5,6. In these equations, the vectdyt) . _J 3 -1
groups the components of the random fort¥t) and (1,120 = | dorg{an(ry,0on(r2,00)0 (12, 1s).
the random torquet®(t) that the solvent exerts on the (7
tracer particle. It is modeled as a Gaussiéitorrelated
noise, with zero mean and time-dependent correlatiormrhe second alternative expressmnzb{(t) is what we refer
function given by the fluctuation-dissipation relation, to as the force equation, which can be written as

= 54

=

(fO()fO(t)7(0)) =kgT£%24(t), where kg is Boltzmann's

— 3 3 3
constant andr is the temperature. Thex3 subtensorg’0 AZ(t)—ﬁf d f1f d rzf drg
PR, g rT, and gOR are the translational-translational, N -
translational-rotational, ~ rotational-translational, ~ and X[V 4g(r ) 1x(r1,F2:0) 0 (1o, r)[ Vagr(ra)]T,
rotational-rotational free-diffusionor short-timeg friction
tensors of the isolated tracer particle. The components of ®

=1

[0 are considered here externally-determined phenomenavhere=1/kgT, andy(r) is the pair potential of the direct
logical parameters. The random effects of the direct interacinteraction between the tracer particle and one sphere located
tions of the tracer particle with the surrounding sphericalat positionr referring to the tracer’s reference frame. Equa-
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tions(4) and(8) are equivalent, since they are related to each ., KaT 2 = N
other by the exact relationsh{gee Sec. IV of papey | AZ(t)= (;7)f d3k[Kh(k)Jo 1K) x(k,t)[Kh(—Kk)]T,
[Vlne°(r1)]=—,6’J d®roo(ri Vo121, 9 g

which is a generalization of the well-known Wertheim- had B 3 = :
Lovett's equation of the equilibrium theory of inhomoge- Aé(t)Z(zTr)sf d°k[K (k) Ix(k,t) o(K)[K (k) ],
neous fluidd6]. The formal equivalence between these two (13)

=4
expressions forA (t) will cease to apply as soon as we
introduce approximations far(ry,r,) and/orn®{r), which
violate the exact relationship in E¢P).

where

h(k):f d3e'*h(r), (14)
Ill. HOMOGENEITY APPROXIMATION
o with h(r)=n®*{r)/n—1,

In order to evaluate\ {(t) according to the general re-
sults above, we need to determine first the two static struc- _ 3, ikt
tural properties involved, nameln®Yr) and o(r,,r,). Be- "[’(k)_f dre™ (),
ing equilibrium properties, they can be determined in
principle by the approaches of the statistical thermodynamiélnd
theory of inhomogeneous fluidls,6]. In fact, this is what we
shall do withn®qr), which is in reality a pair correlation =
function (between one sphere and the tracer paiti¢iecon- K=
trast, the determination af(r,,r,), which is in fact a three-
particle distribution functiorftwo spheres and the tracer par-

:'ﬁ.le)’ may cortlsttrl]t_ute In {Dl’aCtl_C? a drathet;]d'g'ct"t _tasl|<_. Forintroduced the homogeneity approximation. For this reason
IS reason, at this point we introduce the nrst simp Ifylngwe shall label it as CH. For similar reasons, the force equa-

approximation, which consists in approximatiadr;.r2) by ion'in Eq. (13) will be labeled FH. Although they derive,

its value in the absence of the tracer patrticle, i.e., by its bu”?espectively from the exact results in E¢é) and (8), they
value. Ignoring the effects of the field of the tracer on theare no Iongér exact. Furthermore, although Hq)s.aﬁd ®
correlatlon b(_atween th? two spheres, redugés, ) to a are equivalent to each other, the equivalence between Egs.
pair correlation function (now only. lbetween the tWo (15 and(13) is no longer guaranteed, due to the introduction
spherek In this caseo(ry.rp) and o™ =(ry,ry) no I_onger of the homogeneity approximation. Thus, we can anticipate
depend separately ony, andr,, but on_ly on th? dls_tan(?e possible inconsistencies between the results obtained from
[r1—r2|. Another manner to express this approximation, is tohem “and we are interested in assessing the degree of incon-
write o(rq,r,) as sistency, at least in particular applications. The two equa-
1 tions remain, however, still general for the generic system
U(rl,rz):_sf d3k e K (12 (k), (100  considered here, since no assumption has been made con-
(27) cerning the nature of the interaction potentialé) and
. ) . , #(r) (between two spheres and between the tracer and one
where a(k) is the Fourier transforn{FT) of the isotropic sphere, respectivelyGiven u(r) and (r), one can deter-
function o(|r,—r,|). This is essentially the static structure mine in principle, by statistical thermodynamic methods, the
factor S(k) of the suspension of spheres in the bulk; moregtatic structure factoer(k)/n of the suspension of spheres,
precisely,a (k) =nS(k). _ and the equilibrium concentratianfy(r) of spheres around
_ In a similar manner, we can _also ignore the effects of thgpe nonspherical tracer partidithus leading td(k)]. Thus,
field of the tracer on the collective diffusion propagator, andipe only object that we still have to determine is the collec-
approximatey(ry.r;t) by its bulk valuex(|r1—rol.t). This  tive diffusion propagatox(k,t). This is what we do in the

(15

k

kka . (16)

Equation (12) is the concentration equation, in which we

allows us to write following section.
1 )
x(ri,rot)= —af d3k eflk‘(flfrz)X(k,t), (11 IV. COLLECTIVE DIFFUSION PROPAGATOR
(27) AND FICK'S APPROXIMATION

where x(k,t) is then defined [see Egq. (7)] as Let us recall the basic definition of the collective diffusion
x(k,t)=F(k,t)/S(k), whereF (k,t) is the intermediate scat- propagatorx(r,,rp;t) in Eq. (7), in terms of the time-
tering function of the suspension of sphef&$ (referring,  dependent correlation function of the variable(r,t). There
however, to the reference frame of the tracer particle, whiclis an important aspect in this definition, which involves the
undergoes Brownian motion; see Sec).lV reference frame in which the position vectohas been de-
Equations(10) and (11) constitute what we shall refer to fined, i.e.,r has its origin in the center of mass of the tracer
as the homogeneity approximation. They allow us to writeparticle, which is not fixed, but is undergoing Brownian mo-
Egs.(4) and(8), respectively, as tion. This fact introduces an intrinsic dependence of the col-
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lective dynamics represented jgyr,,r,;t), on the dynamics
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are the longitudinal and transversal free diffusion coefficients

of the tracer particle. Making this dependence explicit, everdf the nonspherical tracer particle, which we assume
in an approximate manner, is the first aspect of our determi@xisymmetric. In fact, for simplicity, we are assuming that
=4 =4 =4

nation of y(k,t). One way to proceed is to recall the micro-
scopic definition of the variablen(r,t), namely [5,7],

n(r,t)==,_,"N8(r—r;(t)), wherer,(t) is the instantaneous
position of particlei at timet with respect to the center of

() ap i chliagonal, with ¢? =(£9)1= (822, {f=(E% s,

and£3=(¢%;i, (i=4.5,6).
For the bulk collective diffusion propagatgf® (k,t), we

mass of the tracer particle. Thus, within the homogeneitytan also resort at this point to its simplest approximation,

approximation, Eq(7) can also be written as
N
2 explik-[ri(H)=r;(0)]}

1
X(k,t)=<v > >/ ok).  (17)

If we denote byx;(t) the position of the center of mass of the
tracer (=T) and of each of thé&\ spheresi(=1,2,... N),

which we refer to as the short-time, or Fick’s diffusion ap-
proximation, namely7,8],

) Dot)
—k % , (24

X(B)(k,t)=ex;<

where D? is the short-time diffusion coefficient of the

with respect to the laboratory, we can write this equation aspheregalso an externally determined paramgter

x(k,t)= < exdik- AXT(U]%

N
xiEj exp[ik-[xi(t)—x]-(O)]}>/o(k), (18)

where Ax(t)=x(t) —x7(0) is the translational displace-

Using the decoupling approximation, E@O), in either
the concentration or the force equatidiss.(12) and(13)],

=4
we may now writeA £ (t) in terms of the tracer and collec-
tive diffusion propagators. The resulting expressions, which
we would then label as CHD and FHD, to recall the order
and hierarchy of the approximations introduced, still require
specific approximations fog1(k,t) and x®(k,t), such as
those in Eqs(22)—(24). These, however, are about the sim-

ment of the tracer particle. This equation suggests a simplplest of such approximations, and more refined options
decoupling approximation for the ensemble average indicould, and will, also be considered. For simplicity, in the

cated by( ), which reads

x(k,t)~(exdik-Ax(t)])
N

> explik-[x(H)—x;(0)])

1]

X

Vv

>/a(k). (19)

This is what we shall refer to as the “decoupling approxi-
mation” (DA), which we then may write as

X(DA)(kit):XT(k!t)X(B)(kvt)! (20)
with
x1(k,t)=(e'k&x7v) (21)

being the tracer-diffusion propagator, and whef®(k,t) is
the collective diffusion propagator, now referring to the ref-

present work we decide to adopt this level of approximation
for x(k,t) and x®(k,t), which, when employed in either
the CHD or the FHD schemes, finally leads to closed and

explicit expressions foA £(t) in terms only of the short-
time transport parameteB’, Df, andD?, and the equilib-
rium structural propertie$S(k), h(k), and/or (k). These
two schemes, which we shall denote by CHDF and FHDF
include the reminder of the use of the rather accessorial
Fick's approximation for the collective propagatare now
ready for concrete applications, as we shall illustrate in Sec.
VILI.

V. SELF-CONSISTENCY TEST OF THE THEORY

Before illustrating the concrete use of these results, let us
discuss how other results in the literature happen to be con-
tained as particular cases, and let us describe an interesting

geneity approximation, in the absence of the tracer particlehich our tracer particle is also spheri¢although different,

i.e., it is the ordinary collective diffusion propagator of the
bulk suspension of sphergs].
Of course, the tracer-diffusion propagatgy(k,t) de-

=4
pends in fact om\ £ (t). Thus, we need an independent clo-
sure relation, for which we assume at the moment the si
plest of them, consisting in approximating:(k,t) by its
free-diffusion, or short-time, expression

xr(k,t)=exp(—kZDPt)exy — (Ki+k5)DOt],  (22)
where
kg T
DI=—" (y=I.1) 23
Y

in general, from the surrounding spherdsor this we mean
that (r) [and alson®Y(r)] only depends on the magnitude
[r], and hencey(k) andh(k) only depend on the magnitude
of k. Then, #(k)=u;gk) and h(k)=h;gk), where
urg(k) andhg(k) are, respectively, the Fourier transform of

e pair potentialitg(r) and of the total correlation function
h;(r), between the spherical tracer particlE) (and one of
the surrounding sphere§). It is not difficult to see that in
this case,

KXV ih(k)=kxXV,h(k)=0, (25
and hence, from either Eq12) or Eq. (13), we find that
Ag;(t)=0if i,j=4,5,6. This simply tells us that a spherical
tracer particle can rotate without additional friction due to its
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direct interactions with the other spherical particles aroundinteractions with the surrounding spheres is described by
it. Furthermore A j;(t) also vanishes if eitheror j is 4, 5, AZ%P(t). Now imagine that two of these tracer particles are
rigidly bound to each other, with a center-to-center separa-
tion | thus constituting a dumbell. This dumbell can now be
. viewed as our nonspherical tracer particle, which undergoes
3% 3 subtensor that we denote simply&g(t). On the other translational and rotational Brownian motion. For an infi-

hand. we also find thaAZ(t) is isotropic, i.e. ﬁ-AZ(t)ﬁ nitely elongated dumbell,—«, we expect that the transla-

has the same value for anv unit vecfor Therefore. usin tional and rotational friction forces and torques will be the
y ' 9 simple superposition of the friction forces and torques on

the representation AZ;;(t)=n;-AZ(t)-n;, with n;  each of the two spheres of the dumbell. This means that if
(i=1,2,3) being the unit vectorsx(y, z) of a Cartesian ¢, and {| are the transversal and parallel translational fric-
system, we have that{;;(t)=&;A¢t) (i,j=1,2,3), tion coefficients of the dumbell, thefy = {;=2£°"", where

— Sph . . . . . . . .-
where AZ()=Ti{ A Z(t)/3] is given, according, for ex- %P is the friction coefficient of each of its spheres. Simi

; : larly, if {g is the rotational friction coefficientfor rotations
mpl h ncentration ion, ER » VSR . ;
ample, to the concentration equation, ), by around an axis perpendicular to the dumbell pxihen

kgTn [k,hrg(k)]? Lr=(12/2)£P" What we now prove is the dynamical version
APt = (277)3f 3 0 x(kt).  (26)  of these expectations, referring to the contributidng(t),

A, (1), andA{g(t) of the direct interactions of the dumbell
This expression 0n|y involves the homogeneity approximaWith the Surrounding Spherical particles. To see this, let us
tion emp|oyed in the concentration equati@mhich we la- notice that when the dumbell is hlgh'y elongated, such that
beled as CH Within the decoupling approximation, Eq. >\, where\ is the correlation length of the radial distribu-
(20), and in the still more restricted case in which the tracertion functiongrg(r) of the spheres§) around a sphereT))
particle is identical to the other spher€B=S, and hence, of the dumbell, then the local concentratiofi{r) of the
hTS(k):[S(k)r(_ 1]/n), Eq. (26) coincides with the expres- spheres around the dumbell can be written as
sion for AZ5P'(t) derived by Hess and Kleif9] for self- B
diffusion. Their)derivation, ri/owever, employed a completely n*(r)=ngrs(|r =12 Pgr(Ir+1/2)), @7

different approach, involving mode-mode coupling argu-wherel=Iq, with A being a unit vector in the direction of the
ments. The particular version of such result, labeled MMClsymmetry axis. Thus, sinck(r)=n®Yr)/n—1, and using

by Nagele et al. [10], corresponds, in our language, to the b_(r)=g,(r)—1, we have that Eq27) can also be writ-
use of the additional approximations of E¢482) and (24),  ten as
i.e., to what we have labeled here as CHDF. Thus, our
CHDF results of the previous section constitute a generali- h(r)=hrg([r=1/2])+heg([r+1/2])
zation of Hess and Klein's self-diffusion expresion for
AZ%P(t), which allows for the tracer to be different from the +hrg((r=172Dhrg(|r+172)). (28)
other spheres around(it1]. Furthermore, our results of the The |ast term in this equation, however, must be ignored,
previous sectiortboth CHDF and FHDFalso describe the gince eitheth (|r—1/2|) or hrg(|r+1/2]) vanish for allr
rotational Brownian motion of the tracer particle when it \yhen|>\. Thus, the FT of Eq(28) is given by
actually is nonspherical. _ '

Let us now explain an interesting self-consistency test of h(k)=[e* "2+ e 1k 112]h k), (29
our theory. For this, consider first just the same system dis- i i i
cussed above, namely, a spherical tracer particle whose sdierenrs(k) is the FT ofhrg(r). This expression foh(k)
vent friction coefficent isz%, and whose isotropic time- caHn now be substituted in Eq12). For the subtensor

dependent friction function representing its directA {(t) [i.e., zj(t), with i,j=1,2,3), we then find that

or 6. Thus, the only possibly nonzero elementadf(t) are
A (1) with i,j=1,2,3, which define the components of a

<~ [ keTn 3 » o Xkt kBTnJ 3 ) x(k,1)
|
where we used the identity cos=(1+cosX)/2. Now, we O
observe that the second term on the right-hand side of this ."LELA £(H)=2A¢°P1), (3D

equation vanishes for>\. This is so because the factor
cosk,) becomes rapidly oscillatory whek, varies in the  \ith
range where the rest of the integrand is slowly varying.,

where |k,|]=~\"1). Hence, this integral tends to zero, and

7 i i i ] - 2kgTn kit
A £ (t) tends to a value given by the first term of this equa A 2Pty = (237)3J o kkh%s(k)X( ) (32

tion. This, however, can be written as S(k) ’
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which is precisely twice the expression we would get fromthough the discussion was based on the concentration equa-
Eq. (12) when the tracer is a spherical particle. As indicatedtion [Eq. (12)], similar arguments can be given starting from

before,A £ SP(t) is isotropic, i.e. AZP(t) = &; AZSP(t) with the force equation, Eq13).

AZSP(t) given by Eq.(26). Therefore, from Eq(32), we
have thath 7, (t) = AZ, (t) = 2A (1), which, with the no- V- EXTENSION TO MULTICOMPONENT SUSPENSION

tation “xx—L" and “zz—|,” is expressed as As explained in paper (end of Sec. V, extending the
_ _ results of the present theory to the case in which the particles
t“_U;AQ(t)=t|mA§||(t):2A§Sth)- (83)  with which the nonspherical tracer interacts belong to more

than one species, is quite a simple matter, involving only

. ) o adequate notation. In our case, we refer to the case in which
In a similar manner, let us cons@er the subtenSgrr(t), the other particles are spherical, but belong to species
defined by the components ¢f {(t)];; with i,j=4,56. «=12,... . The corresponding extension of E¢2) and
This is the time-dependent contribution of the direct interac{13) can be written, respectively, as
tions to the friction tensor coupling the total torque on the K
tracer with its angular velocity. For an axisymmetric tracer A?(t)z (231;3

o

" fd3k[KH(k)]Oa‘1
particle, we can define the components &f/g(t) by
ni-A {r(t)-N;, with Ay, Ay, Nz being the Cartesian unit vec- X (k)O x(k,t)O[KH(—k)]T, (36)
tors, X, ¥, z, and withz pointing in the symmetry axis of the

dumbell. From Eq.(12), with Eq. (29), we find that and

A?R(t) is diagonal. Furthermore, we find thatA -z also o B .

vanishes. This means that the rotation of the dumbell around Af()= (277)3f d*k[K¢(k)]Ox(k,HO

its symmetry axis causes no friction due to the direct inter-

actions with the surrounding spheres. We also find that x o(K)O[K (k)] 37)

%A CR(D)-X=9-ALr(t)-§=Alx(t), which indicates the _ . _
equivalence of the rotations around any of the two axigProvided thair(k) andx(k,t) are considereaX v matrices,
orthogonal toz. In order to evaluate\ Zg(t) from Eq.(12), andH(k) and (k) are considered vectors with compo-
let us notice, using Eq. (29), that hents, and O” indicates the corresponding inner product
%-[kx V h(k)]=k,hrs(K)sin(k1/2). With this result, along (.., summation over common species indjcédore con-

with the identity sifx=(1—cosX)/2, we obtain for cretely, the components ofy(k) will be y,(k)
AZr(1) (e=1,2,...p), the Fourier transform of the pair potential

,(r) between the tracer particle and one sphere at position
r with respect to the tracer's center of mass, ahg(k)

|2 I(BTFI 3 2,2 X(k:t) . h h __ e imilarl K
AéR(t)=§ 2m° d3k kyhTS(k)W is the FT of n,hr(r)=n{r)—n,. Similarly, o,z(k)
=Ny Ngl 0,5+ VN Ngh,g(K) ], and x,g(k,t) is the FT of
kgTn s 202 x(k,t) the multicomponent version of thésotropig collective
T 2n)? d°k kyhTs(k)COS(szW : propagator.

It is also not difficult to see that the arguments leading to
(34)  the decoupling approximation in E¢20) go through un-
changed, leading to
By the same argument used for the translational motion, the oA 5
second term on the right-hand side vanishes in the limit X (k) = x7 (kD xR (K, b), (38)
| —o. In addition, the first term inside the brackets of Eq. o )
(34) is precisely the expresion far*(t) in Eq.(26). Thus, ~ With x7(k.t) still given by Eq.(21), and for which we can
we find thatA {x(t) is given, forl -, by §t||| use the short—tlr_ne approximation in .E((22).. Th.e mul-
ticomponent extension of the bulk collective diffusion propa-

2 gatory{2), (k.t), within Fick’s approximation, can be written
Alr(t)= EAgsph(t). (35)  in matrix notation ag11]
Bk t)=exd —k2L°O o Y(Kk)t], (39

Summarizing, the general expression fdr{(t) and with the X v matrix L° defined asl_gﬁznaDgéaﬁ, where

A {g(t) implicit in Eq. (12), together with Eq(29), and in DY is the short-time diffusion coefficient of the spheres of
the limit considered herel$\), leads to prediction$Egs.  speciesa.

(33) and(35)] in accordance with the expected results, based

on reasonable superposition arguments. These predictions VIl. A BROWNIAN DIPOLE INTERACTING

provide confidence on the general validity and formal con- \\\14 THE BROWNIAN ONE-COMPONENT PLASMA
sistency of the theory. Finally, let us note that this demon-

stration only required the homogeneity approximation, and In this section we describe the protocol to be followed in
no use was made of Fick's approximation. Furthermore, alapplying the approximate but general results of Sec. V to a
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concrete system involving a nonspherical tracer particle indetermination of the static propertie§{r) and o(r,r'), in

teracting with a suspension of spheres. In the Introductionterms of which we have expressed the time-dependent fric-
we referred to TMV tracer particles in a polystyrene sphere

suspension, as a simple experimental realization of the gé
neric system considered here. This could be modeled by
Brownian Yukawa fluid with which a nonspherical charged ™ ™ - e
tracer particle interacts. The tracer-sphere interactions coulﬁrtl'esl' ’?ame'fy’ the, Deb}/ﬁ."dhﬁl e;]pprOX|mat!or[5,6]. The

be modeled, for example, assuming the tracer particle to be Giculation ofa(r,r’), within the homogeneity approxima-

line of Yukawa forces. The application of our results to sucht©" '_S a rather simple problem, since its Fourier tranform,
a model is the subject of current work, and will be reported‘T.(k)_nS(k)' is known analytically 9] for the BOP, and is

separately12]. Here, however, we shall consider instead the9Ven by

simplest idealized model system that retains the basic fea-
tures of our generic system, and that lends itself to an almost o(k)=ngk)=n
fully analytical treatment.

Consider a system of pointlike particles at bulk concen- Iy a-wow; : e . . _
tration n, interacting by purely Coulombic forces, so that wherex= y4mng'. The calculation oh™(r) is a little bit

their pair potential is just more involved, anq it amounts to the calculation pf the struc-
ture of the “electrical double layer” around a dipolar par-
2 ticle. Carrying out this calculation in the Debye-tkel ap-
u(r)= q_. (400 proximation(in quite an analogous manner as in the Debye-
r Huckel calculation of the spherical double layer around a

) ) ) o ] charged spherical particle, see Ref3]), we get
This system, which requires a rigid background of uniform

charge densityp,=—qn to guarantee charge neutrality, is .
referred to as the one-component pladiih If we assume, n*qr)=n
in addition, that each pointlike ion executes Brownian mo-
tion with a free-diffusion coefficient given tp°, we refer to

it as the Brownian one-component plasm@OP) [9], and
this is our idealization of the suspension of spherical Brown-
ian particles with which a nonspherical tracer particle will where §(x) is Heaviside’'s step function. What we actually
interact. The model for the nonspherical tracer particle isneed, however, is the Hi(k) of h(r)=n®*{r)/n—1. This is
defined by its nonradially symmetric interaction potentialgiven by

Y(r) with the “spheres” of the BOP. The analytically sim-

=4
ion tensorA ¢ (t). For this we may resort to the methods of
e statistical thermodynamics of fluids, and here we adopt
the simplest approximation available to calculate these prop-

2

K
pemedt 42

1 exp(ka) exp(— kr)
_'Bql+Ka+(Ka)2/3 r

X (1+kr)m-t|6(r—a), (43)

plest such interaction is the point-dipole—point-ion interac- hek) = 4 Bq ﬁ-IQ K?
tion. Thus, let us adopt a Brownian point dipole as our model (k)= 1+ka+(ka)?3 k |k?+«?
nonspherical tracer particle, so that
K sin(ka)
q X cos{ka)+Esm(ka) —(1+«a) ka |-
-3 ,l_I:I”\, r>a
p(r)=yT (41) (44)
©, r<a,

This function, together withr(k), is the static input of the
concentration equation, E¢L2). For the force equation, we
require o(k), along with the FTy(k) of the tracer-sphere
interaction potentialy(r). In our case, Fourier transforming
%q. (41), we get

Where,& is the electrical dipole, and where we have also
allowed for a finite spherical hard core around this pointlike
dipole. Thus, our tracer particle is a hard sphere of radiu
a with a point dipole located in its center. We will also
assume that in the absence of interactions with the -

“ ” : : o g [madika)ju-k

spheres,” the Brownian motion of this dipolar tracer par- YK =i\ 5— 37— (45)
ticle is characterized by the free-diffusion coefficiem$ 2e V2 (ka)

and Dy characterizing its translational and rotational diffu- whereJy(x) is the Bessel function of order 1/2.

sion, so that its short-time friction tensg? has components ~_ The third step is to use these static structural inputs in
e 0 . o o . either of the two approximate schemes defined in Sec. IV,
[g”o]ij =6;¢{; with (7=kgT/Dy for =123, and and referred to as FHDF and CHDF. For this, let us summa-

0__ 0 H— H H =
{i=kgT/Dg for i=4.5,6. In this manner, we have .de.fmed rize here the expressions fArZ (t) that result from employ-
the fundamental parameters that constitute the basic input @ g Fick's approximation for the collective diffusion propa-

our theory, namely, the free diffusion coefficiedf of the gator [Eq. (24), along with the short-time tracer-diffusion

i5d

spherical particles, the free-diffusion friction teng8rof the ~ Propagator(Eq. (22)] in the decoupling approximation, Eq.
tracer particle, the sphere-sphere interaction poteni), ~ (20), together with either the concentratifiq. (12)] or the
and the tracer-sphere interaction potentigt). This is the force[Eq. (13)] equation. Let us write this summary, how-
very first step in attempting to apply the general results ofever, in terms of the relevant elements of the tensg(t),
our theory to a particular system. The second step is theshich we denote asA({ (t), Ag(t), and Afg(t).
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The resulting expressions for these functions, denoted collec- kT
tively asAZ,(t), (with y=1, |, andR), are given, within Dy:m- (50
Y Y

the CHDF scheme, by
The calculation ofA, and A{; can be carried out fully
2 analytically within both the CHDF and the FHDF schemes,
and the results, and limiting cases, will be discussed else-
where[14], within the context of the description of electro-
x exd —kZDjt— (ki +kj)D0t] lyte friction phenomena. Here we only present our results for
AR, for which we find, using the Debye-ldkel statics in

K, h(k)
S(k)

kgT
CHDF/ 4y _ "B 3
Agy (t)——g(zﬂ_) Jd k

210

xXexg — kS(Dk)t), (46) the CHDF scheme,

A ZCHOF— w2 1 x(1-¢?)
whereas in the FHDF scheme, they are given by R D%a)| 272 (1+x+x2/3)?
B y J"’“d 1/ 1+y?
AR O= s f d*k|K., (k) [2o(K) L Wzl e )| Tz | coayX)
i 2

xext -~ kgDt~ (ki kj)Dit] i sin(yx)) PR L
2[0 y yX
k-D"t

Xex"( "5k ) (47 \where x=«a and c=(1+D%D® Y2 Unfortunately, we

could not reduce this result to a closed analytic form for
arbitrary asymmetries in the free diffusion coefficients of the

In both casesK, is defined as o C .
tracer O%) and the surrounding ionDC). However, in the

K y=L extreme limit whereD%/D%—0, we have
={ k,, = 2\1  x(2/3+x
Ky z Y ” (48) A{gHMF=< IL(;‘ - ( , ) , (52)
KXV, ], 7=R. D%a)9 (1+x+x%3)

2
i
PHDF_
AlRT= ( D$ea

On the other hand, within the CHDF scheme, the results
effects of the direct interactions on the translational mOtionanaIytical form, and are given by
of the tracer particle in the direction transversal to its sym- ’
11 11,

squared(transversal displacement, and the corresponding 2%\ +§e
diffusion coefficientD, . In a similar mannerA{(t) de-

. . . . . . 4+ _— — —g@72xC (53
motion of the tracer particle in the direction parallel to its 2c 2¢
any axis perpendicular to its symmetry axis. This completesind
our summary, which is in fact applicable for any system in ( 2

1

expl— 2x)/
48

2X
-1-2
X (e X)

The time-dependent friction functioa{, (t) describes the corresponding to Eqg51) and (52) are obtained in closed
metry axis. FromA/Z, (t) we could calculate the mean
2
scribes the corresponding effects referring to the translational 1 1 ) }
axis, whereas\ {g(t) refers to the rotational motion around
the generic type considered in this paper. A ZPHMF_ s

. (59

The specific application to the particular model system R D%a
considered in this section amounts to substituting the a
proximate expression foB(k), h(k), and (k) [Egs. (42),
(44), and(45)] in either the CHDF or FHDF expressions for
AZ,(t) in Egs.(46) and(47). This reduces to quadratures the

calculation of these properties. In general, the integrak on gpse in whichD$=D°. As we can see from this figure, in

involved in these expressions cannot always be calculat : :

. . - o .~ Spite of the different analytic appearance of the two expres-
analytically, and in our specific application, the reSUItIngsions forA{r, the qualitative behavior is quite similar. This
analytic expressions are not particularly instructive. For thisWe found t%’ be ?he case for all the gther cases' where
reason, let us analyze here only one important quantity de-

0 O - - . . . .
rived fromAZ,(t), namely, its time integral, denoted simply 1_> DT/D_ =0. _In the limit in which the tracer pa_trtlcle_ IS
by highly immobile compared to the surrounding ions

[DY/D%—0, see Eq(52) and(53)], the analytic expressions
- for A obtained from the two schemes are clearly different.
Aé’yzf Az (tdt  (y=1,[,R), (49  Nevertheless, the qualitative behavior is also quite similar.
0 Although some of these observations may be interesting, our
purpose here was only to describe the protocol to be fol-
which is the static friction coefficient from which the corre- lowed in going from the general and exact results of the
sponding(long-time tracer-diffusion coefficienD , follows  previous paper down to a concrete application, and in this
using Eintein’s relation sense, the results discussed in this section should suffice.

Pwith these results at hand, we can compare the extent of the
expected inconsistencies between the CHDF and FHDF re-
sults. This is illustrated in Fig. 1, where the results in Eq.
(51) and(53) for AR are plotted as a function afa for the
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0.008 |

Ad(sa)/ (

0.002

FIG. 1. Electrostatic contribution to the static rotational friciton coeffici@dk of a Brownian dipolar hard sphere interacting with a
Brownian one-component plasma, as a function of the inverse Debye lefigtaled with the radiua of the dipolar hard spheyeA (i has
been scaled With/@2/D$ea), whereu is the magnitude of the electric dipdlla-or the free diffusion coefficient of the tracer, aathe solvent
dielectric constant. The solid line corresponds to the use of the concentration eq@iDiF schemg and the dashed line to the force
equation(FHDF schemg

VIll. SUMMARY Huckel approximatioh In other applications however, this
step will in general require numerical approaches that may

In this paper we have started from the exact results of our . A - .
constitute a rather severe limitation in some specific applica-

previous work, as they apply to the generic system in which; o T ;
a nonspherical tracer particle interacts with other diffusing:1lons of our theory. Once the static information is available,

=4
particles that are spherical. Besides restricting in this mannérowever, the calculation of the relevant elementa ¢f(t) is
the general results of the previous paper, here we introduce@duced to an integration in the Fourier variakleas we
two important approximations, referred to as the homogeneindicated in our illustrative example. Let us mention that the
ity approximation(Sec. Il)) and the decoupling approxima- most difficult aspect in the determination of the static prop-
tion (Sec. IV). With the introduction of an additional, rather erties is the calculation af*{r). Notice, however, that it is
accessorial approximatiotthe “short-time” or “Fick's” gy the concentrationequation that requires®{(r) as the

=4
approximatio, we finally succeeded in expressing (t) in  Static input. Thus, when the calculation wf{r) proves to
terms solely of the static properties and the elementarype particularly difficult, we can still employ thierce equa-
(short-time transport properties of the system. The actualtion, which only requires the pair interactiaf(r). Accord-
application of the resulting approximate expressions foiing to our illustrative example, both schemes will differ

A?(t) was illustrated in the previous section, where a veryduantitatively, but the qualitative agreement may be ex-
simple model systenta Brownian point dipole interacting pected to be sqtlsfacto_ry. In th|§ manner we have completed
with the Brownian one-component plasmaas considered. ©OUr Program, aimed &) establishing a general theoretical
As illustrated there, the actual application of our approximatdramework to describe the Brownian motion of a nonspheri-
results in Sec. V requires that the fundamental propertie§al tracer particle interacting with other, in general also non-
defining our system are given. These fundamental propertiegPherical, particlegthis was the subject of papey, lii) pro-

. . . . =4
are the pair interaction potentialj(r) (between the tracer ducing approximate expressions far¢(t) for a generic
particle, one surrounding spherand u(r) (between two  system(a nonspherical tracer interacting with other, spheri-
spherej @and the short-time tracer-diffusion tensor ca| particles (these expresions were written in terms, essen-

SngBT(ZOT)fl of the tracer particle and the tracer diffu- tially, of the static properties of tr;e systgnand (iii ) apply-

sion coefficienD® of the surrounding spheres. The next steping the resulting expressions far/ (t) to specific systems.

in to determine the static propertia§{r) ando(r,r’) from Here we only attempted to illustrate this point with a rather
#(r) and u(r). This proved to be an easy matter in our simple model. Shortly we shall report our work on a second,
illustrative application due to the use of a particularly simplefar less trivial, application to a more realistic model system,
approximation of the theory of simple liquidshe Debye- employing more sophisticated approximations to determine
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the static inputs of our theofy12]. In addition, the extension we might label as CHMF and FHMF, respectively. The MF
of the second aspegtii) abovd to the case in which the label refers to the use of this modified version of Fick ap-
other particles besides the tracer particle are also nonsphef¥oximation. In recent short accounts of our present work
cal, is also in progre§d.5]. As a final remark, let us mention [16,17, these approximate schemes were considered for sim-
that other approximate general schemes, besides CHDF afCity.
FHDF discussed here, are also possible. Thus, if instead of

the decoupling approximation in E¢20) we approximate ACKNOWLEDGMENTS

x(k,t) in Egs.(12) and(13) directly with Fick’'s approxima- This work was supported by CONACyTonsejo Nacio-
tion in Eq. (24) with an effective mobilityBD* replacing nal de Ciencia y Tecnolog) Mexico, No. Grant 3882-
BD°, we can define two other approximate schemes, whictE9407).
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