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A theory is presented to describe the translational and rotational Brownian motion of a nonspherical tracer
particle that interacts with other diffusing spherical particles around it. In order to apply this theory, approxi-
mations must be introduced that allow us to express the tracer-diffusion properties of the tracer particle in
terms of the static structural properties of the system. We illustrate the application of these results with the
calculation of the rotational diffusion coefficient of a Brownian electric dipole that interacts with a Brownian
one-component plasma.@S1063-651X~96!06112-0#

PACS number~s!: 82.70.Dd

I. INTRODUCTION

The rotational dynamics of nonspherical colloidal par-
ticles is a subject of long-standing interest@1,2#. Among the
many issues that await systematic study, both from the theo-
retical and from the experimental side, is the description of
the effects of the interactions between many colloidal par-
ticles that execute translational and rotational Brownian mo-
tion while interacting among themselves by direct and hy-
drodynamic forces@3#. In this paper we address one aspect of
this general problem, as a continuation of our work on this
subject contained in the previous paper@4# ~hereafter referred
to as paper I!. There we developed a general theory to de-
scribe the effects of the direct interactions between a non-
spherical tracer particle and other, also generally non-
spherical, particles diffusing around it, on the translational
and rotational motion of the former. The main result of that
paper is the derivation of a generalized Langevin equation
for the linear and angular velocity of the tracer particle. The
effects of the direct interactions with the other particles are

contained in a time-dependent friction tensor,D z
⇔
(t), for

which general and exact expressions were derived. Those
formally exact results, however, cannot be used in a concrete
application before approximations and simplifications are in-
troduced, and this is what we do in the present work. In order
to proceed, however, we first restrict the generality of the
results in paper I to the case in which the tracer particle is
nonspherical, but the other particles with which it interacts
are spherical. For concreteness, we might imagine a system
formed by a suspension of interacting spherical colloidal par-
ticles ~e.g., polystyrene spheres in water!, in which a trace of
nonspherical particles is added@e.g., tobacco mosaic virus
~TMV !, or other rigid polyelectrolyte#. Each of these non-
spherical tracer particles will execute translational and rota-
tional Brownian motion, while interacting with the many
spherical particles around them. The effects of these interac-
tions are contained in the time-dependent friction function

D z
⇔
(t) of the nonspherical tracer, and it is this quantity what

we want to calculate. As in paper I, here we also neglect
hydrodynamic interactions. The main purpose of this paper is
to derive, starting from the general and exact results of paper

I, approximate expressions forD z
⇔
(t) in terms only of the

static properties of the system. These approximate expres-
sions will be, however, still general for the generic condi-
tions to which we restrict ourselves here. As it turns out,
introducing approximations leads not to a single expression

for D z
⇔
(t), but to a number of different results, which may in

general not be consistent. Thus, another important purpose of
this work is to monitor the consequences of the order and
hierarchy of the approximations that are introduced. The ap-
proximate results of this paper will then be ready for their
specific application to concrete systems such as the one men-
tioned above~TMV in polystyrene sphere suspension!. Here,
however, we shall only describe their application to a sim-
pler and idealized model system, with the purpose of illus-
trating the protocol to be followed in the process of going
from the general and exact results of paper I down to con-
crete and specific applications.

In the following section we quote the main results of pa-
per I, and in Sec. III we introduce the first simplifying ap-
proximation, referred to as the homogeneity approximation.
The second important approximation is the use of Fick’s
diffusion ~or short-time! approximation for the collective dif-
fusion propagator for the spherical particles, along with a
manner to relate the description of this propagator as ob-
served from the reference frame of the tracer particle, and as
observed from the laboratory. This is discussed in Sec. IV. In
Sec. V we discuss a general self-consistency test of our re-
sults. The extension to multicomponent suspension is de-
scribed in Sec. VI. In Sec. VII we illustrate their application
to a simple idealized model, namely, a Brownian dipole in-
teracting with a Brownian one-component plasma. Section
VIII summarizes our results.

II. GENERAL RESULTS

Let us start our discussion by quoting the general and
exact results of paper I, as they apply to the generic system
considered here~see Sec. VIII of paper I!. Thus, consider a
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nonspherical tracer particle whose instantaneous linear and
angular velocityV(t) andv(t) are definedwith respect to
the laboratory, but whose components arereferred to a ref-
erence frame whose origin is fixed to the laboratory, but
whose orientation follows instantaneously the orientation of
the principal axis of the rotating tracer particle. LetM be the
mass, and let Ii ( i51,2,3) be the principal moments of iner-
tia of the tracer particle. Then, according to the general re-
sults of paper I, and using the compact notation introduced
there, the equation of motion of the tracer particle is the
following generalized Langevin equation

M
⇔
•

dV
⇒

~ t !

dt
52z0

⇔
•V

⇒
~ t !1f 0

⇒
~ t !

2E
0

t

dt8D z
⇔

~ t2t8!•V
⇒

~ t8!1F
⇒

~ t !, ~1!

where the six-component vectorsV
⇒
(t), f 0

⇒
(t), andF

⇒
(t) are

defined as

V
⇒

~ t !5S V~ t !

v~ t !D , f 0
⇒

~ t !5S f 0~ t !t0~ t ! D , F
⇒

~ t !5S F~ t !

T~ t !D ,
~2!

and the 636 matricesM
⇔
, z0

⇔
, andD z

⇔
(t) are defined as

z0
⇔

[S z0
↔

z0
↔

TR

z0
↔

RT
† z0

↔

R

D , M
⇔

[S M1 0

0† I D ,

D z
⇔

~ t ![S D z
↔

~ t ! D z
↔

TR~ t !

D z
↔

RT
† ~ t ! D z

↔

R~ t !
D , ~3!

with M
⇔

i j5Mid i j , andMi5M ~the mass! for i51,2,3 and

Mi5I i for i54,5,6. In these equations, the vectorf 0
⇒
(t)

groups the components of the random forcef 0(t) and
the random torquet0(t) that the solvent exerts on the
tracer particle. It is modeled as a Gaussiand-correlated
noise, with zero mean and time-dependent correlation
function given by the fluctuation-dissipation relation,

^f 0
⇒
(t)f 0

⇒
(t)†(0)&5kBTz0

⇔
2d(t), where kB is Boltzmann’s

constant andT is the temperature. The 333 subtensorsz0
↔
,

z0
↔

TR , z0
↔

RT, and z0
↔

R are the translational-translational,
translational-rotational, rotational-translational, and
rotational-rotational free-diffusion~or short-time! friction
tensors of the isolated tracer particle. The components of

z0
⇔

are considered here externally-determined phenomeno-
logical parameters. The random effects of the direct interac-
tions of the tracer particle with the surrounding spherical

particles are contained in the random forceF(t) and random

torqueT(t) grouped inF
⇒
(t). These are stochastic processes,

which are not necessarily Gaussian, and are certainly not
d correlated. They do have zero mean, and their time-
dependent correlation function is given by the fluctuation-

dissipation relation̂ F
⇒
(t)F

⇒
†(0)&5kBTD z

⇔
(t).

The other important result of paper I is a general and
exact expression for the time-dependent friction tensor

D z
⇔
(t) describing the effects of the direct interactions. This

general result can be written in three alternative but formally
equivalent manners. Here we shall only be interested in two
of them, referred to as theconcentrationequation and the
forceequation. The concentration equation is written as

D z
⇔

~ t !5kBTE d3r 1E d3r 2E d3r 3

3@“
⇒
1n

eq~r1!#s
21~r1 ,r2!x~r2 ,r3 ;t !@“

⇒
3n

eq~r3!#
†,

~4!

where

“

⇒
5S “

r3“ D , ~5!

and whereneq(r ) is the equilibrium local concentration of
spherical particles around the tracer particle~here we only
consider the case corresponding to a monodisperse suspen-
sion of spheres; the extension to polidisperse suspensions
will be indicated in Sec. VI below!. In Eq.~4!, s21(r1 ,r2) is
the inverse of the static correlation function

s~r1 ,r2![^dn~r1,0!dn~r2,0!&, ~6!

of the spheres, wheredn(r ,t)[n(r ,t)2neq(r ) is the fluctua-
tion of their instantaneous local concentrationn(r ,t), around
its equilibrium valueneq(r ). s21 and s are related by
*d3r 2s

21(r1 ,r2)s(r2 ,r3)5d(r12r3). The collective diffu-
sion propagatorx(r1 ,r2 ;t) can be defined as

x~r1 ,r2 ;t !5E d3r 3^dn~r1 ,t !dn~r2,0!&s21~r2 ,r3!.

~7!

The second alternative expression forD z
⇔
(t) is what we refer

to as the force equation, which can be written as

D z
⇔

~ t !5bE d3r 1E d3r 2E d3r 3

3@“
⇒
1c~r1!#x~r1 ,r2 ;t !s~r2 ,r3!@“

⇒
3c~r3!#

†,

~8!

whereb51/kBT, andc(r ) is the pair potential of the direct
interaction between the tracer particle and one sphere located
at positionr referring to the tracer’s reference frame. Equa-
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tions~4! and~8! are equivalent, since they are related to each
other by the exact relationship~see Sec. IV of paper I!

@“
⇒
1n

eq~r1!#52bE d3r 2s~r1 ,r2!@“
⇒
2c~r2!#, ~9!

which is a generalization of the well-known Wertheim-
Lovett’s equation of the equilibrium theory of inhomoge-
neous fluids@6#. The formal equivalence between these two

expressions forD z
⇔
(t) will cease to apply as soon as we

introduce approximations fors(r1 ,r2) and/orn
eq(r ), which

violate the exact relationship in Eq.~9!.

III. HOMOGENEITY APPROXIMATION

In order to evaluateD z
⇔
(t) according to the general re-

sults above, we need to determine first the two static struc-
tural properties involved, namely,neq(r ) ands(r1 ,r2). Be-
ing equilibrium properties, they can be determined in
principle by the approaches of the statistical thermodynamic
theory of inhomogeneous fluids@5,6#. In fact, this is what we
shall do withneq(r ), which is in reality a pair correlation
function~between one sphere and the tracer particle!. In con-
trast, the determination ofs(r1 ,r2), which is in fact a three-
particle distribution function~two spheres and the tracer par-
ticle!, may constitute in practice a rather difficult task. For
this reason, at this point we introduce the first simplifying
approximation, which consists in approximatings(r1 ,r2) by
its value in the absence of the tracer particle, i.e., by its bulk
value. Ignoring the effects of the field of the tracer on the
correlation between the two spheres, reducess(r1 ,r2) to a
pair correlation function ~now only between the two
spheres!. In this case,s(r1 ,r2) and s21(r1 ,r2) no longer
depend separately onr1 and r2, but only on the distance
ur12r2u. Another manner to express this approximation, is to
write s(r1 ,r2) as

s~r1 ,r2!5
1

~2p!3
E d3k e2 ik•~r12r2!s~k!, ~10!

wheres(k) is the Fourier transform~FT! of the isotropic
function s(ur12r2u). This is essentially the static structure
factor S(k) of the suspension of spheres in the bulk; more
precisely,s(k)5nS(k).

In a similar manner, we can also ignore the effects of the
field of the tracer on the collective diffusion propagator, and
approximatex(r1 ,r2 ;t) by its bulk valuex(ur12r2u,t). This
allows us to write

x~r1 ,r2 ;t !5
1

~2p!3
E d3k e2 ik•~r12r2!x~k,t !, ~11!

where x(k,t) is then defined @see Eq. ~7!# as
x(k,t)5F(k,t)/S(k), whereF(k,t) is the intermediate scat-
tering function of the suspension of spheres@7# ~referring,
however, to the reference frame of the tracer particle, which
undergoes Brownian motion; see Sec. IV!.

Equations~10! and ~11! constitute what we shall refer to
as the homogeneity approximation. They allow us to write
Eqs.~4! and ~8!, respectively, as

D z
⇔

~ t !5
kBTn

2

~2p!3
E d3k@K

⇒
h~k!#s21~k!x~k,t !@K

⇒
h~2k!#†,

~12!

and

D z
⇔

~ t !5
b

~2p!3
E d3k@K

⇒
c~k!#x~k,t !s~k!@K

⇒
c~k!#†,

~13!

where

h~k!5E d3reik•rh~r !, ~14!

with h(r )[neq(r )/n21,

c~k!5E d3reik•rc~r !, ~15!

and

K
⇒

5S k

k3“kD . ~16!

Equation ~12! is the concentration equation, in which we
introduced the homogeneity approximation. For this reason
we shall label it as CH. For similar reasons, the force equa-
tion in Eq. ~13! will be labeled FH. Although they derive,
respectively, from the exact results in Eqs.~4! and ~8!, they
are no longer exact. Furthermore, although Eqs.~4! and ~8!
are equivalent to each other, the equivalence between Eqs.
~12! and~13! is no longer guaranteed, due to the introduction
of the homogeneity approximation. Thus, we can anticipate
possible inconsistencies between the results obtained from
them, and we are interested in assessing the degree of incon-
sistency, at least in particular applications. The two equa-
tions remain, however, still general for the generic system
considered here, since no assumption has been made con-
cerning the nature of the interaction potentialsu(r ) and
c(r ) ~between two spheres and between the tracer and one
sphere, respectively!. Given u(r ) andc(r ), one can deter-
mine in principle, by statistical thermodynamic methods, the
static structure factors(k)/n of the suspension of spheres,
and the equilibrium concentrationneq(r ) of spheres around
the nonspherical tracer particle@thus leading toh(k)]. Thus,
the only object that we still have to determine is the collec-
tive diffusion propagatorx(k,t). This is what we do in the
following section.

IV. COLLECTIVE DIFFUSION PROPAGATOR
AND FICK’S APPROXIMATION

Let us recall the basic definition of the collective diffusion
propagatorx(r1 ,r2 ;t) in Eq. ~7!, in terms of the time-
dependent correlation function of the variabledn(r ,t). There
is an important aspect in this definition, which involves the
reference frame in which the position vectorr has been de-
fined, i.e.,r has its origin in the center of mass of the tracer
particle, which is not fixed, but is undergoing Brownian mo-
tion. This fact introduces an intrinsic dependence of the col-
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lective dynamics represented byx(r1 ,r2 ;t), on the dynamics
of the tracer particle. Making this dependence explicit, even
in an approximate manner, is the first aspect of our determi-
nation ofx(k,t). One way to proceed is to recall the micro-
scopic definition of the variablen(r ,t), namely @5,7#,
n(r ,t)5( i51

Nd(r2r i(t)), wherer i(t) is the instantaneous
position of particlei at time t with respect to the center of
mass of the tracer particle. Thus, within the homogeneity
approximation, Eq.~7! can also be written as

x~k,t !5K 1V (
i , j

N

exp$ ik•@r i~ t !2r j~0!#%LY s~k!. ~17!

If we denote byxi(t) the position of the center of mass of the
tracer (i5T) and of each of theN spheres (i51,2, . . . ,N),
with respect to the laboratory, we can write this equation as

x~k,t !5K exp@ ik•DxT~ t !#1V
3(

i , j

N

exp$ ik•@xi~ t !2xj~0!#%LYs~k!, ~18!

where DxT(t)[xT(t)2xT(0) is the translational displace-
ment of the tracer particle. This equation suggests a simple
decoupling approximation for the ensemble average indi-
cated by^ &, which reads

x~k,t !'^exp@ ik•DxT~ t !#&

3K 1V (
i , j

N

exp$ ik•@xi~ t !2xj~0!# !LYs~k!. ~19!

This is what we shall refer to as the ‘‘decoupling approxi-
mation’’ ~DA!, which we then may write as

x~DA!~k,t !5xT~k,t !x
~B!~k,t !, ~20!

with

xT~k,t ![^eik•DxT~ t !& ~21!

being the tracer-diffusion propagator, and wherex (B)(k,t) is
the collective diffusion propagator, now referring to the ref-
erence frame of the laboratory, and, according to the homo-
geneity approximation, in the absence of the tracer particle,
i.e., it is the ordinary collective diffusion propagator of the
bulk suspension of spheres@7#.

Of course, the tracer-diffusion propagatorxT(k,t) de-

pends in fact onD z
⇔
(t). Thus, we need an independent clo-

sure relation, for which we assume at the moment the sim-
plest of them, consisting in approximatingxT(k,t) by its
free-diffusion, or short-time, expression

xT~k,t !5exp~2kz
2D i

0t !exp@2~kx
21ky

2!D'
0 t#, ~22!

where

Dg
0[

kBT

zg
0 ~g5i ,' ! ~23!

are the longitudinal and transversal free diffusion coefficients
of the nonspherical tracer particle, which we assume
axisymmetric. In fact, for simplicity, we are assuming that

(z0
⇔
)ab is diagonal, withz'

05(z0
⇔
)115(z0

⇔
)22, z i

05(z0
⇔
)33,

andzR
05(z0

⇔
) i i , (i54,5,6).

For the bulk collective diffusion propagatorx (B)(k,t), we
can also resort at this point to its simplest approximation,
which we refer to as the short-time, or Fick’s diffusion ap-
proximation, namely@7,8#,

x~B!~k,t !5expS 2k2
D0t

S~k! D , ~24!

where D0 is the short-time diffusion coefficient of the
spheres~also an externally determined parameter!.

Using the decoupling approximation, Eq.~20!, in either
the concentration or the force equations@Eqs.~12! and~13!#,

we may now writeD z
⇔
(t) in terms of the tracer and collec-

tive diffusion propagators. The resulting expressions, which
we would then label as CHD and FHD, to recall the order
and hierarchy of the approximations introduced, still require
specific approximations forxT(k,t) and x (B)(k,t), such as
those in Eqs.~22!–~24!. These, however, are about the sim-
plest of such approximations, and more refined options
could, and will, also be considered. For simplicity, in the
present work we decide to adopt this level of approximation
for xT(k,t) andx (B)(k,t), which, when employed in either
the CHD or the FHD schemes, finally leads to closed and

explicit expressions forD z
⇔
(t) in terms only of the short-

time transport parametersD0, D i
0 , andD'

0 , and the equilib-
rium structural propertiesS(k), h(k), and/orc(k). These
two schemes, which we shall denote by CHDF and FHDF~to
include the reminder of the use of the rather accessorial
Fick’s approximation for the collective propagator! are now
ready for concrete applications, as we shall illustrate in Sec.
VII.

V. SELF-CONSISTENCY TEST OF THE THEORY

Before illustrating the concrete use of these results, let us
discuss how other results in the literature happen to be con-
tained as particular cases, and let us describe an interesting
self-consistency test of the theory. Consider first the case in
which our tracer particle is also spherical~although different,
in general, from the surrounding spheres!. For this we mean
that c(r ) @and alsoneq(r )] only depends on the magnitude
ur u, and hence,c(k) andh(k) only depend on the magnitude
of k. Then, c(k)5uTS(k) and h(k)5hTS(k), where
uTS(k) andhTS(k) are, respectively, the Fourier transform of
the pair potentialuTS(r ) and of the total correlation function
hTS(r ), between the spherical tracer particle (T) and one of
the surrounding spheres (S). It is not difficult to see that in
this case,

k3“kc~k!5k3“kh~k!50, ~25!

and hence, from either Eq.~12! or Eq. ~13!, we find that
Dz i j (t)50 if i , j54,5,6. This simply tells us that a spherical
tracer particle can rotate without additional friction due to its
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direct interactions with the other spherical particles around
it. Furthermore,Dz i j (t) also vanishes if eitheri or j is 4, 5,

or 6. Thus, the only possibly nonzero elements ofD z
⇔
(t) are

Dz i j (t) with i , j51,2,3, which define the components of a

333 subtensor that we denote simply asD z
↔
(t). On the other

hand, we also find thatD z
↔
(t) is isotropic, i.e.,n̂•D z

↔
(t)•n̂

has the same value for any unit vectorn̂. Therefore, using

the representation Dz i j (t)5n̂i•D z
⇔
(t)•n̂j , with n̂i

( i51,2,3) being the unit vectors (x̂, ŷ, ẑ) of a Cartesian
system, we have thatDz i j (t)5d i jDzsph(t) ( i , j51,2,3),

whereDzsph(t)[Tr@D z
↔
(t)/3# is given, according, for ex-

ample, to the concentration equation, Eq.~12!, by

Dzsph~ t !5
kBTn

~2p!3
E d3k

@kzhTS~k!#2

S~k!
x~k,t !. ~26!

This expression only involves the homogeneity approxima-
tion employed in the concentration equation~which we la-
beled as CH!. Within the decoupling approximation, Eq.
~20!, and in the still more restricted case in which the tracer
particle is identical to the other spheres„T5S, and hence,
hTS(k)5@S(k)21#/n), Eq. ~26! coincides with the expres-
sion for Dzsph(t) derived by Hess and Klein@9# for self-
diffusion. Their derivation, however, employed a completely
different approach, involving mode-mode coupling argu-
ments. The particular version of such result, labeled MMC1
by Nägele et al. @10#, corresponds, in our language, to the
use of the additional approximations of Eqs.~22! and ~24!,
i.e., to what we have labeled here as CHDF. Thus, our
CHDF results of the previous section constitute a generali-
zation of Hess and Klein’s self-diffusion expresion for
Dzsph(t), which allows for the tracer to be different from the
other spheres around it@11#. Furthermore, our results of the
previous section~both CHDF and FHDF! also describe the
rotational Brownian motion of the tracer particle when it
actually is nonspherical.

Let us now explain an interesting self-consistency test of
our theory. For this, consider first just the same system dis-
cussed above, namely, a spherical tracer particle whose sol-
vent friction coefficent iszT

0 , and whose isotropic time-
dependent friction function representing its direct

interactions with the surrounding spheres is described by
Dzsph(t). Now imagine that two of these tracer particles are
rigidly bound to each other, with a center-to-center separa-
tion l thus constituting a dumbell. This dumbell can now be
viewed as our nonspherical tracer particle, which undergoes
translational and rotational Brownian motion. For an infi-
nitely elongated dumbell,l→`, we expect that the transla-
tional and rotational friction forces and torques will be the
simple superposition of the friction forces and torques on
each of the two spheres of the dumbell. This means that if
z' and z i are the transversal and parallel translational fric-
tion coefficients of the dumbell, thenz'5z i52zsph, where
zsph is the friction coefficient of each of its spheres. Simi-
larly, if zR is the rotational friction coefficient~for rotations
around an axis perpendicular to the dumbell axis!, then
zR5( l 2/2)zsph. What we now prove is the dynamical version
of these expectations, referring to the contributionsDz i(t),
Dz'(t), andDzR(t) of the direct interactions of the dumbell
with the surrounding spherical particles. To see this, let us
notice that when the dumbell is highly elongated, such that
l@l, wherel is the correlation length of the radial distribu-
tion functiongTS(r ) of the spheres (S) around a sphere (T)
of the dumbell, then the local concentrationneq(r ) of the
spheres around the dumbell can be written as

neq~r !5ngTS~ ur2 l/2 u!gTS~ ur1 l/2u!, ~27!

wherel[ l n̂, with n̂ being a unit vector in the direction of the
symmetry axis. Thus, sinceh(r )[neq(r )/n21, and using
hTS(r )5gTS(r )21, we have that Eq.~27! can also be writ-
ten as

h~r !5hTS~ ur2 l/2u!1hTS~ ur1 l/2u!

1hTS~ ur2 l/2u!hTS~ ur1 l/2u!. ~28!

The last term in this equation, however, must be ignored,
since eitherhTS(ur2 l/2u) or hTS(ur1 l/2 u) vanish for all r
when l@l. Thus, the FT of Eq.~28! is given by

h~k!5@eik• l/21e2 ik• l/2#hTS~k!, ~29!

wherehTS(k) is the FT ofhTS(r ). This expression forh(k)
can now be substituted in Eq.~12!. For the subtensor

D z
↔
(t) @i.e., z

⇔
i j (t), with i , j51,2,3), we then find that

D z
↔

~ t !52F kBTn~2p!3
E d3k kkhTS

2 ~k!
x~k,t !
S~k! 1

kBTn

~2p!3
E d3k kkcos~kzl !hTS

2 ~k!
x~k,t !
S~k! G , ~30!

where we used the identity cos2x5(11cos2x)/2. Now, we
observe that the second term on the right-hand side of this
equation vanishes forl@l. This is so because the factor
cos(kzl) becomes rapidly oscillatory whenkz varies in the
range where the rest of the integrand is slowly varying~i.e.,
where ukzu'l21). Hence, this integral tends to zero, and

D z
↔
(t) tends to a value given by the first term of this equa-

tion. This, however, can be written as

lim
l→`

D z
↔

~ t !52D z
↔
sph~ t !, ~31!

with

D z
↔
sph~ t !5

2kBTn

~2p!3
E d3k kkhTS

2 ~k!
x~k,t !

S~k!
, ~32!
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which is precisely twice the expression we would get from
Eq. ~12! when the tracer is a spherical particle. As indicated

before,D z
↔
sph(t) is isotropic, i.e.,Dz i j

sph(t)5d i jDzsph(t) with
Dzsph(t) given by Eq.~26!. Therefore, from Eq.~32!, we
have thatDzxx(t)5Dzzz(t)52Dzsph(t), which, with the no-
tation ‘‘xx→' ’’ and ‘‘ zz→i ,’’ is expressed as

lim
t→`

Dz'~ t !5 lim
t→`

Dz i~ t !52Dzsph~ t !. ~33!

In a similar manner, let us consider the subtensorD z
↔
R(t),

defined by the components of@D z
⇔
(t)# i j with i , j54,5,6.

This is the time-dependent contribution of the direct interac-
tions to the friction tensor coupling the total torque on the
tracer with its angular velocity. For an axisymmetric tracer

particle, we can define the components ofD z
↔
R(t) by

n̂i•D z
↔
R(t)•n̂j , with n̂1, n̂2, n̂3 being the Cartesian unit vec-

tors, x̂, ŷ, ẑ, and withẑ pointing in the symmetry axis of the
dumbell. From Eq. ~12!, with Eq. ~29!, we find that

D z
↔
R(t) is diagonal. Furthermore, we find thatẑ•D z

↔
R• ẑ also

vanishes. This means that the rotation of the dumbell around
its symmetry axis causes no friction due to the direct inter-
actions with the surrounding spheres. We also find that

x̂•D z
↔
R(t)• x̂5 ŷ•D z

↔
R(t)• ŷ[DzR(t), which indicates the

equivalence of the rotations around any of the two axis
orthogonal toẑ. In order to evaluateDzR(t) from Eq. ~12!,
let us notice, using Eq. ~29!, that
x̂•@k3“kh(k)#5kyhTS(k)sin(kzl /2). With this result, along
with the identity sin2x5(12cos2x)/2, we obtain for
DzR(t)

DzR~ t !5
l 2

2 F kBTn~2p!3
E d3k ky

2hTS
2 ~k!

x~k,t !

S~k!

2
kBTn

~2p!3
E d3k ky

2hTS
2 ~k!cos~kzl !

x~k,t !

S~k! G .
~34!

By the same argument used for the translational motion, the
second term on the right-hand side vanishes in the limit
l→`. In addition, the first term inside the brackets of Eq.
~34! is precisely the expresion forDzsph(t) in Eq. ~26!. Thus,
we find thatDzR(t) is given, for l→`, by

DzR~ t !5
l 2

2
Dzsph~ t !. ~35!

Summarizing, the general expression forD z
↔
(t) and

D z
↔
R(t) implicit in Eq. ~12!, together with Eq.~29!, and in

the limit considered here (l@l), leads to predictions@Eqs.
~33! and~35!# in accordance with the expected results, based
on reasonable superposition arguments. These predictions
provide confidence on the general validity and formal con-
sistency of the theory. Finally, let us note that this demon-
stration only required the homogeneity approximation, and
no use was made of Fick’s approximation. Furthermore, al-

though the discussion was based on the concentration equa-
tion @Eq. ~12!#, similar arguments can be given starting from
the force equation, Eq.~13!.

VI. EXTENSION TO MULTICOMPONENT SUSPENSION

As explained in paper I~end of Sec. V!, extending the
results of the present theory to the case in which the particles
with which the nonspherical tracer interacts belong to more
than one species, is quite a simple matter, involving only
adequate notation. In our case, we refer to the case in which
the other particles are spherical, but belong to species
a51,2, . . . ,n. The corresponding extension of Eqs.~12! and
~13! can be written, respectively, as

D z
⇔

~ t !5
kBT

~2p!3
E d3k@K

⇒
H~k!#ss21

3~k!sx~k,t !s@K
⇒
H~2k!#†, ~36!

and

D z
⇔

~ t !5
b

~2p!3
E d3k@K

⇒
c~k!#sx~k,t !s

3s~k!s@K
⇒

c~k!#†, ~37!

provided thats(k) andx(k,t) are consideredn3n matrices,
andH(k) andc(k) are considered vectors withn compo-
nents, and ‘‘s ’’ indicates the corresponding inner product
~i.e., summation over common species indices!. More con-
cretely, the components ofc(k) will be ca(k)
(a51,2, . . . ,n), the Fourier transform of the pair potential
ca(r … between the tracer particle and one sphere at position
r with respect to the tracer’s center of mass, andHa(k)
is the FT of nahTa(r )[na

eq(r )2na . Similarly, sab(k)
5Ananb@dab1Ananbhab(k)#, and xab(k,t) is the FT of
the multicomponent version of the~isotropic! collective
propagator.

It is also not difficult to see that the arguments leading to
the decoupling approximation in Eq.~20! go through un-
changed, leading to

xab
~DA!~k,t !5xT~k,t !xab

~B!~k,t !, ~38!

with xT(k,t) still given by Eq.~21!, and for which we can
still use the short-time approximation in Eq.~22!. The mul-
ticomponent extension of the bulk collective diffusion propa-
gatorx (ab)

(B) (k,t), within Fick’s approximation, can be written
in matrix notation as@11#

x~B!~k,t !5exp@2k2L0ss21~k!t#, ~39!

with the n3n matrix L0 defined asLab
0 5naDa

0dab , where
Da
0 is the short-time diffusion coefficient of the spheres of

speciesa.

VII. A BROWNIAN DIPOLE INTERACTING
WITH THE BROWNIAN ONE-COMPONENT PLASMA

In this section we describe the protocol to be followed in
applying the approximate but general results of Sec. V to a
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concrete system involving a nonspherical tracer particle in-
teracting with a suspension of spheres. In the Introduction,
we referred to TMV tracer particles in a polystyrene sphere
suspension, as a simple experimental realization of the ge-
neric system considered here. This could be modeled by a
Brownian Yukawa fluid with which a nonspherical charged
tracer particle interacts. The tracer-sphere interactions could
be modeled, for example, assuming the tracer particle to be a
line of Yukawa forces. The application of our results to such
a model is the subject of current work, and will be reported
separately@12#. Here, however, we shall consider instead the
simplest idealized model system that retains the basic fea-
tures of our generic system, and that lends itself to an almost
fully analytical treatment.

Consider a system of pointlike particles at bulk concen-
tration n, interacting by purely Coulombic forces, so that
their pair potential is just

u~r !5
q2

r
. ~40!

This system, which requires a rigid background of uniform
charge densityrel52qn to guarantee charge neutrality, is
referred to as the one-component plasma@5#. If we assume,
in addition, that each pointlike ion executes Brownian mo-
tion with a free-diffusion coefficient given byD0, we refer to
it as theBrownian one-component plasma~BOP! @9#, and
this is our idealization of the suspension of spherical Brown-
ian particles with which a nonspherical tracer particle will
interact. The model for the nonspherical tracer particle is
defined by its nonradially symmetric interaction potential
c(r ) with the ‘‘spheres’’ of the BOP. The analytically sim-
plest such interaction is the point-dipole–point-ion interac-
tion. Thus, let us adopt a Brownian point dipole as our model
nonspherical tracer particle, so that

c~r !5H q

r 3
mW • r̂ , r.a

`, r,a,

~41!

wheremW is the electrical dipole, and where we have also
allowed for a finite spherical hard core around this pointlike
dipole. Thus, our tracer particle is a hard sphere of radius
a with a point dipole located in its center. We will also
assume that in the absence of interactions with the
‘‘spheres,’’ the Brownian motion of this dipolar tracer par-
ticle is characterized by the free-diffusion coefficientsDT

0

andDR
0 characterizing its translational and rotational diffu-

sion, so that its short-time friction tensorz0
⇔
has components

@z0
⇔

# i j5d i j z i
0 with z i

05kBT/DT
0 for i51,2,3, and

z i
05kBT/DR

0 for i54,5,6. In this manner, we have defined
the fundamental parameters that constitute the basic input of
our theory, namely, the free diffusion coefficientD0 of the

spherical particles, the free-diffusion friction tensorz0
⇔
of the

tracer particle, the sphere-sphere interaction potentialu(r ),
and the tracer-sphere interaction potentialc(r ). This is the
very first step in attempting to apply the general results of
our theory to a particular system. The second step is the

determination of the static propertiesneq(r ) ands(r ,r 8), in
terms of which we have expressed the time-dependent fric-

tion tensorD z
⇔
(t). For this we may resort to the methods of

the statistical thermodynamics of fluids, and here we adopt
the simplest approximation available to calculate these prop-
erties, namely, the Debye-Hu¨ckel approximation@5,6#. The
calculation ofs(r ,r 8), within the homogeneity approxima-
tion, is a rather simple problem, since its Fourier tranform,
s(k)5nS(k), is known analytically@9# for the BOP, and is
given by

s~k!5nS~k!5nF k2

k21k2G , ~42!

wherek5A4pbnq2. The calculation ofneq(r ) is a little bit
more involved, and it amounts to the calculation of the struc-
ture of the ‘‘electrical double layer’’ around a dipolar par-
ticle. Carrying out this calculation in the Debye-Hu¨ckel ap-
proximation~in quite an analogous manner as in the Debye-
Hückel calculation of the spherical double layer around a
charged spherical particle, see Ref.@13#!, we get

neq~r !5nS 12bq
exp~ka!

11ka1~ka!2/3

exp~2kr !

r

3~11kr !mW • r̂ D u~r2a!, ~43!

whereu(x) is Heaviside’s step function. What we actually
need, however, is the FTh(k) of h(r )[neq(r )/n21. This is
given by

h~k!5
4p ibq

11ka1~ka!2/3

mW • k̂

k F k2

k21k2

3S cos~ka!1
k

k
sin~ka! D2~11ka!

sin~ka!

ka G .
~44!

This function, together withs(k), is the static input of the
concentration equation, Eq.~12!. For the force equation, we
requires(k), along with the FTc(k) of the tracer-sphere
interaction potentialc(r ). In our case, Fourier transforming
Eq. ~41!, we get

c~k!5 i
q

2e
Ap

2

aJ1/2~ka!mW • k̂

~ka!3/2
, ~45!

whereJ1/2(x) is the Bessel function of order 1/2.
The third step is to use these static structural inputs in

either of the two approximate schemes defined in Sec. IV,
and referred to as FHDF and CHDF. For this, let us summa-

rize here the expressions forD z
⇔
(t) that result from employ-

ing Fick’s approximation for the collective diffusion propa-
gator @Eq. ~24!, along with the short-time tracer-diffusion
propagator~Eq. ~22!# in the decoupling approximation, Eq.
~20!, together with either the concentration@Eq. ~12!# or the
force @Eq. ~13!# equation. Let us write this summary, how-
ever, in terms of the relevant elements of the tensorD z

⇔
(t),

which we denote asDz'(t), Dz i(t), and DzR(t).
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The resulting expressions for these functions, denoted collec-
tively asDzg(t), ~with g5', i , andR), are given, within
the CHDF scheme, by

Dzg
CHDF~ t !5

kBT

~2p!3
E d3k UKgh~k!

S~k!
U2

3exp@2kz
2D i

0t2~kx
21ky

2!D'
0 t#

3expS 2
k2D0t

S~k! D , ~46!

whereas in the FHDF scheme, they are given by

Dzg
FHDF~ t !5

b

~2p!3
E d3kuKgc~k!u2s~k!

3exp@2kz
2D i

0t2~kx
21ky

2!D'
0 t#

3expS 2
k2D0t

S~k! D . ~47!

In both cases,Kg is defined as

Kg5H kx , g5'

kz , g5i

@k3“k#x , g5R.

~48!

The time-dependent friction functionDz'(t) describes the
effects of the direct interactions on the translational motion
of the tracer particle in the direction transversal to its sym-
metry axis. FromDz'(t) we could calculate the mean
squared~transversal! displacement, and the corresponding
diffusion coefficientD' . In a similar manner,Dz i(t) de-
scribes the corresponding effects referring to the translational
motion of the tracer particle in the direction parallel to its
axis, whereasDzR(t) refers to the rotational motion around
any axis perpendicular to its symmetry axis. This completes
our summary, which is in fact applicable for any system in
the generic type considered in this paper.

The specific application to the particular model system
considered in this section amounts to substituting the ap-
proximate expression forS(k), h(k), andc(k) @Eqs. ~42!,
~44!, and~45!# in either the CHDF or FHDF expressions for
Dzg(t) in Eqs.~46! and~47!. This reduces to quadratures the
calculation of these properties. In general, the integral onk
involved in these expressions cannot always be calculated
analytically, and in our specific application, the resulting
analytic expressions are not particularly instructive. For this
reason, let us analyze here only one important quantity de-
rived fromDzg(t), namely, its time integral, denoted simply
by

Dzg[E
0

`

Dzg~ t !dt ~g5',i ,R!, ~49!

which is the static friction coefficient from which the corre-
sponding~long-time! tracer-diffusion coefficientDg follows
using Eintein’s relation

Dg5
kBT

zg
01Dzg

. ~50!

The calculation ofDz' and Dz i can be carried out fully
analytically within both the CHDF and the FHDF schemes,
and the results, and limiting cases, will be discussed else-
where@14#, within the context of the description of electro-
lyte friction phenomena. Here we only present our results for
DzR , for which we find, using the Debye-Hu¨ckel statics in
the CHDF scheme,

DzR
CHDF5S m2

DT
0eaD F 1

2p2

x~12c2!

~11x1x2/3!2

3E
0

`

dy
1

y2 S 11y2

y21c2D H 1

11y2 S cos~yx!

1
1

y
sin~yx! D 2~11x!

sin~yx!

yx J 2G , ~51!

where x5ka and c5(11DT
0/D0)21/2. Unfortunately, we

could not reduce this result to a closed analytic form for
arbitrary asymmetries in the free diffusion coefficients of the
tracer (DT

0) and the surrounding ions (D0). However, in the
extreme limit whereDT

0/D0→0, we have

DzR
CHMF5S m2

D0eaD19 x~2/31x!

~11x1x2/3!2
~52!

On the other hand, within the CHDF scheme, the results
corresponding to Eqs.~51! and ~52! are obtained in closed
analytical form, and are given by

DzR
PHDF5S m2

DT
0eaD 1

12F1x S 2
1

2
1
1

2
e22x

1
1

2c
2

1

2c
e22xcD G , ~53!

and

DzR
PHMF5S m2

D0eaD 1

48Fexp~22x!

x
~e2x2122x!G . ~54!

With these results at hand, we can compare the extent of the
expected inconsistencies between the CHDF and FHDF re-
sults. This is illustrated in Fig. 1, where the results in Eq.
~51! and~53! for DzR are plotted as a function ofka for the
case in whichDT

05D0. As we can see from this figure, in
spite of the different analytic appearance of the two expres-
sions forDzR , the qualitative behavior is quite similar. This
we found to be the case for all the other cases where
1.DT

0/D0>0. In the limit in which the tracer particle is
highly immobile compared to the surrounding ions
@DT

0/D0→0, see Eq.~52! and~53!#, the analytic expressions
for DzR obtained from the two schemes are clearly different.
Nevertheless, the qualitative behavior is also quite similar.
Although some of these observations may be interesting, our
purpose here was only to describe the protocol to be fol-
lowed in going from the general and exact results of the
previous paper down to a concrete application, and in this
sense, the results discussed in this section should suffice.
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VIII. SUMMARY

In this paper we have started from the exact results of our
previous work, as they apply to the generic system in which
a nonspherical tracer particle interacts with other diffusing
particles that are spherical. Besides restricting in this manner
the general results of the previous paper, here we introduced
two important approximations, referred to as the homogene-
ity approximation~Sec. III! and the decoupling approxima-
tion ~Sec. IV!. With the introduction of an additional, rather
accessorial approximation~the ‘‘short-time’’ or ‘‘Fick’s’’

approximation!, we finally succeeded in expressingD z
⇔
(t) in

terms solely of the static properties and the elementary
~short-time! transport properties of the system. The actual
application of the resulting approximate expressions for

D z
⇔
(t) was illustrated in the previous section, where a very

simple model system~a Brownian point dipole interacting
with the Brownian one-component plasma! was considered.
As illustrated there, the actual application of our approximate
results in Sec. V requires that the fundamental properties
defining our system are given. These fundamental properties
are the pair interaction potentialsc(r ) ~between the tracer
particle, one surrounding sphere! and u(r ) ~between two
spheres!, and the short-time tracer-diffusion tensor

D
⇔
T
05kBT(z

0
⇔

T)
21 of the tracer particle and the tracer diffu-

sion coefficientD0 of the surrounding spheres. The next step
in to determine the static propertiesneq(r ) ands(r ,r 8) from
c(r ) and u(r ). This proved to be an easy matter in our
illustrative application due to the use of a particularly simple
approximation of the theory of simple liquids~the Debye-

Hückel approximation!. In other applications however, this
step will in general require numerical approaches that may
constitute a rather severe limitation in some specific applica-
tions of our theory. Once the static information is available,

however, the calculation of the relevant elements ofD z
⇔
(t) is

reduced to an integration in the Fourier variablek, as we
indicated in our illustrative example. Let us mention that the
most difficult aspect in the determination of the static prop-
erties is the calculation ofneq(r ). Notice, however, that it is
only the concentrationequation that requiresneq(r ) as the
static input. Thus, when the calculation ofneq(r ) proves to
be particularly difficult, we can still employ theforce equa-
tion, which only requires the pair interactionc(r ). Accord-
ing to our illustrative example, both schemes will differ
quantitatively, but the qualitative agreement may be ex-
pected to be satisfactory. In this manner we have completed
our program, aimed at~i! establishing a general theoretical
framework to describe the Brownian motion of a nonspheri-
cal tracer particle interacting with other, in general also non-
spherical, particles~this was the subject of paper I!, ~ii ! pro-

ducing approximate expressions forD z
⇔
(t) for a generic

system~a nonspherical tracer interacting with other, spheri-
cal particles! ~these expresions were written in terms, essen-
tially, of the static properties of the system!, and~iii ! apply-

ing the resulting expressions forD z
⇔
(t) to specific systems.

Here we only attempted to illustrate this point with a rather
simple model. Shortly we shall report our work on a second,
far less trivial, application to a more realistic model system,
employing more sophisticated approximations to determine

FIG. 1. Electrostatic contribution to the static rotational friciton coefficientDzR of a Brownian dipolar hard sphere interacting with a
Brownian one-component plasma, as a function of the inverse Debye lengthk ~scaled with the radiusa of the dipolar hard sphere!. DzR has
been scaled with (m2/DT

0ea), wherem is the magnitude of the electric dipoleDT
0 the free diffusion coefficient of the tracer, ande the solvent

dielectric constant. The solid line corresponds to the use of the concentration equation~CHDF scheme!, and the dashed line to the force
equation~FHDF scheme!.
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the static inputs of our theory@12#. In addition, the extension
of the second aspect@~ii ! above# to the case in which the
other particles besides the tracer particle are also nonspheri-
cal, is also in progress@15#. As a final remark, let us mention
that other approximate general schemes, besides CHDF and
FHDF discussed here, are also possible. Thus, if instead of
the decoupling approximation in Eq.~20! we approximate
x(k,t) in Eqs.~12! and~13! directly with Fick’s approxima-
tion in Eq. ~24! with an effective mobilitybD* replacing
bD0, we can define two other approximate schemes, which

we might label as CHMF and FHMF, respectively. The MF
label refers to the use of this modified version of Fick ap-
proximation. In recent short accounts of our present work
@16,17#, these approximate schemes were considered for sim-
plicity.
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